
INTRODUCTION

Unmanned aerial vehicles (UAVs) are now
commonly used to fulfill military reconnaissance
missions without endangering human pilots. The
current study considered the role of imperfect
automation in buffering multitask interference, as
a single UAV pilot may be called upon to perform
the multiple tasks required of UAV supervision
and control.

Imperfect Automation

Previously, Dixon, Wickens, and Chang (2005)
employed a perfectly reliable auditory autoalert
system to aid pilots in detecting system failures
during simulated military reconnaissance mis-
sions, and they found that these autoalerts im-
proved performance in the automated task with no
performance loss in either of two concurrent tasks.
Unfortunately, these types of alerting aids are
rarely entirely reliable; subsequently, questions

arise as to the effect of unreliable automation on
pilot trust, dependence, and human-automation
performance. Imperfect automation has been
shown to create different states of overtrust, under-
trust, or calibrated trust (Parasuraman & Riley,
1997), “complacency” (Metzger & Parasuraman,
2005; Parasuraman, Molloy, & Singh, 1993), and
performance loss (Molloy & Parasuraman, 1996).

In spite of such reported problems, imperfect
automation clearly can assist human operator per-
formance (e.g., Galster, Bolia, Roe, & Parasura-
man, 2001; St. John & Manes, 2002; Yeh, Merlo,
Wickens, & Brandenburg, 2003), particularly in
circumstances when human resources to the
unaided task are insufficient (e.g., Maltz & Shinar,
2003; Yaacov, Maltz, & Shinar, 2003) and, there-
fore, the human must depend upon the automa-
tion. Such resource scarcity may result either when
the task itself is difficult (Maltz & Shinar, 2003) or
when the automated task is carried out in a multi-
task context (C. D. Wickens & Dixon, 2005).

Automation Reliability in Unmanned Aerial Vehicle Control:
A Reliance-Compliance Model of Automation Dependence
in High Workload

Stephen R. Dixon and Christopher D. Wickens, University of Illinois, Aviation Human
Factors Division, Savoy, Illinois

Objective: Two experiments were conducted in which participants navigated a simu-
lated unmanned aerial vehicle (UAV) through a series of mission legs while searching
for targets and monitoring system parameters. The goal of the study was to highlight
the qualitatively different effects of automation false alarms and misses as they relate
to operator compliance and reliance, respectively. Background: Background data
suggest that automation false alarms cause reduced compliance, whereas misses cause
reduced reliance. Method: In two studies, 32 and 24 participants, including some
licensed pilots, performed in-lab UAV simulations that presented the visual world and
collected dependent measures. Results: Results indicated that with the low-reliability
aids, false alarms correlated with poorer performance in the system failure task,
whereas misses correlated with poorer performance in the concurrent tasks. Conclu-
sion: Compliance and reliance do appear to be affected by false alarms and misses,
respectively, and are relatively independent of each other. Application: Practical
implications are that automated aids must be fairly reliable to provide global benefits
and that false alarms and misses have qualitatively different effects on performance.

Address correspondence to Stephen R. Dixon, University of Illinois, Institute of Aviation, Aviation Human Factors Division,
1 Airport Rd., Savoy, IL 61874; srdixon1@uiuc.edu. HUMAN FACTORS, Vol. 48, No. 3, Fall 2006, pp. 474–486. Copyright ©
2006, Human Factors and Ergonomics Society. All rights reserved.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
Automation Reliability in Unmanned Aerial Vehicle Control: A
Reliance-Compliance Model of Automation Dependence in High
Workload 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Illinois,Aviation Human Factors Division,1 Airport 
Road,Savoy,IL,61874 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



AUTOMATION RELIABILITY IN UAVS 475

Diagnostic Failures: Misses and False
Alarms

The focus of the current study was on imperfect
automation diagnostic alerting systems, in which
the automation attempted to distinguish two pos-
sible states of the world: a “safe” state and a “dan-
gerous” one (Swets & Pickett, 1982). The sources
of imperfection in such systems relate to imper-
fect sensors and algorithms as well as to noisy or
probabilistic data in an uncertain world. The per-
formance of such systems can generally be rep-
resented in the framework of signal detection
theory (Green & Swets, 1988; T. D. Wickens,
2002), whereby the consequences of the imper-
fection show up as automation misses and/or false
alarms.

In application, the automation designer typi-
cally has the opportunity to set “beta” (the thresh-
old of the alerting system) in a way that will trade
off the relative frequency of these two kinds of
automation errors. At issue is where this trade-off
should optimally be set. If the output of the auto-
matic diagnostic process directly triggers a deci-
sion, then the optimal criterion could easily be
calculated by applying some expected value al-
gorithm to the consequences of the two sorts of
resulting actions. However, this process becomes
complicated when the human operator also has
parallel access to the same perceptual “raw data”
processed by the automation, bringing qualita-
tively different strengths of perceptual analysis to
bear. Here the optimal setting may vary (Sorkin
& Woods, 1985). In such cases, an automation
miss may not inevitably create a total system miss
if the human is somewhat vigilant of the raw data.
Furthermore, in those multitask situations in which
automation dependence is critical because of high
workload, the costs to total system performance
must also account for the costs (of automation
misses and/or automation false alarms) to human
performance on concurrent tasks.

There is some evidence that the generic costs of
alerting system false alarms may be greater than
those of misses. For example, Bliss (2003) found
that pilots reported more than twice as many alert-
related aviation incidents related to false alarms
as compared with those related to misses (although
this disparity may reflect a higher base rate of false
alert events). Maltz and Shinar (2003) observed
a similar asymmetry in their laboratory data.

Furthermore, false alarms are well known to cause
annoyance, to lead to unnecessary evasive actions,
and, in the worst-case scenario, to lead to suffi-
cient distrust of the automated system that true
alarms are ignored – the “cry wolf” syndrome
(Breznitz, 1983; Parasuraman & Riley, 1997;
Sorkin, 1989). Despite such evidence, it is impor-
tant to note that in many situations, misses may be
more costly than false alarms (e.g., air traffic con-
trol) and that experts may be more accepting of
false alarms than of misses (Masalonis & Para-
suraman, 1999).

Reliance Versus Compliance

The qualitative distinction between the two
kinds of diagnostic imperfections is important
because of the recent dichotomization of two very
different cognitive states – reliance and compli-
ance – that are associated with automated diag-
nostic systems committing one or the other type of
error, particularly under conditions of high work-
load (Maltz & Shinar, 2003; Meyer, 2001, 2004).
We consider these two states to be two different
manifestations of automation dependence, a de-
pendence that will be inversely related to automa-
tion reliability in resource-scarce circumstances.
Here reliance refers to the human operator state
when the alert is silent, signaling “all is well.”
Reliant operators will have ample resources to
allocate to concurrent tasks because they rely on
the automation to let them know when a problem
occurs on the automated task. Miss-prone automa-
tion will degrade reliance, particularly under high
workload, and as a result should lead to decre-
ments in concurrent tasks. In forcing the operator
to pay closer attention to the raw data of the alert-
ed domain, there should be more effective detec-
tion of those (now more frequent) misses made
by the automation system. Conversely, highly
reliable, low-miss automation, although availing
ample resources for concurrent tasks, should leave
the operator quite vulnerable to the rare automation
misses during high workload – the “complacency”
effect (Bainbridge, 1983; Molloy & Parasuraman,
1996; Parasuraman et al., 1993).

In contrast, compliance describes the operator’s
response when the alarm sounds, whether true or
false. A compliant operator will rapidly switch
attention from concurrent activities to the alarm
domain (and possibly immediately initiate an
alarm-appropriate response, such as leaving the
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building upon hearing a fire alarm). Automation
that is prone to false alarms will degrade compli-
ance, the consequences of which are a delayed
response (or possibly, no response at all) to a true
alarm (Breznitz, 1983; Sorkin, 1989).

Although the research of Meyer (2004) has
suggested that the two may be somewhat inde-
pendent states, with separate factors affecting re-
liance and compliance, these two constructs have
not been separately and quantitatively evaluated
within a multitask context in which resources are
scarce and the threshold of an alarm system is sys-
tematically varied to alter the two types of automa-
tion errors. Maltz and Shinar (2003) imposed such
variation but did so within a single-task context
in which resource demand (and automation depen-
dence) was created by a more demanding task.
Unfortunately, no study of imperfect alert automa-
tion has systematically varied the threshold of the
alert system within a dual-task context, where 
the consequences of allocating resources to the
secondary task can be assessed.

The Current Study

Because of its inherent multitask nature (Dix-
on et al., 2005) and ecologically valid properties,
UAV simulation provided an ideal test bed for two
experiments that examined the issues of imperfect
automation in dual-task settings. In both experi-
ments, participants conducted simulated recon-
naissance missions in which they were responsible
for navigating an UAV to 10 different command
targets and for reporting details of those targets
to mission command (Dixon et al., 2005). This
was considered the primary task. Simultaneously,
they were required to search for possible targets
of opportunity (TOOs) along the way. Upon de-
tecting targets, a high-workload camera zoom and
inspect task was engaged. This was considered
the secondary or concurrent task, upon which the
hypothesized effects of reliance could be ob-
served. Participants also had to monitor on-board
system parameters for possible failures. This was
considered the imperfect diagnostic automation
task supporting the primary task, given that an au-
ditory automation-alert aid was sometimes avail-
able to indicate when these system failures had
occurred.

In Experiment 1, this aid was either perfectly
reliable or 67% reliable (producing either false
alarms or misses in two different conditions). A

fourth condition, with no automation, provided
baseline data with which to compare these auto-
mated conditions. In Experiment 2, participants
were assisted by the same autoalert aid but with
reliability levels of 80% (producing both a false
alarm and a miss) and two conditions of 60% (pro-
ducing both false alarms and misses at a 3:1 ratio,
and vice versa). The multiple levels of automation
reliability achieved by varying miss and false
alarm rate independently across the two experi-
ments provide data to validate a computational
model of dependence on imperfect automation.
More specifically, our experiments address four
hypotheses:

H1: The symptoms of automation dependence
(benefits if correct, costs if incorrect) will emerge
primarily at high workload. Automation imper-
fection driven by misses and false alarms would
show qualitatively different effects as reflected by
measures of reliance and of compliance respec-
tively.

H2: Indices of high reliance will decrease with
increasing miss rate. High reliance is indicated by
good target-of-opportunity performance and com-
mand target memory and also by a slow response
to the rare system failure miss when automation is
reliable.

H3: Indices of high compliance will decrease
with increasing false alarm rate. High compliance
is indicated by rapid and accurate responses to all
alerts, whether true or false.

H4: The two vectors of reliance and compli-
ance will show relative independence from each
other.

METHODS: EXPERIMENT 1

Participants

Thirty-two undergraduate and graduate stu-
dents received $8/hr, plus bonuses of $20, $10, and
$5, for first-, second-, and third-place finishes, re-
spectively, out of groups of 8 participants. Partici-
pants were made aware of the incentives and told
how the overall task performance would be cal-
culated. Twenty of the participants were licensed
pilots, who were equally distributed across con-
ditions.

Apparatus

The experimental simulation ran on an Evans
and Sutherland SimFusion 4000q system.TheUAV
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display was generated on an OPENsim Graphics
card on a Hitachi CM721F 19-inch (48-cm) mon-
itor, using 1280 × 1024 resolution. Figure 1 pre-
sents a sample display for a single UAV.

As shown in Figure 1, the experimental en-
vironment was subdivided into four separate
windows. The top left window contained a 3-D
egocentric image view of the terrain directly be-
low the UAV (6000 feet altitude). During regular
tracking periods, the operator could only view
straight down to the ground. During a loiter pat-
tern, the operator was able to zoom and to extend
the viewing angle from 0° to 90° along both the
x and y axes. The bottom left window contained
a 2-D top-down map of the 20 × 20 mile (32 × 32
km) simulation world. Coordinates from 0° to 90°
were placed along the x and y axes for navigation
purposes. The bottom center window contained
the message box, with “fly to” coordinates and
command target (CT) report questions. These
flight instructions were present for 15 s and could
be refreshed for another 15 s at any time during
the mission by pressing a “repeat” key. The bottom
right window contained the four system gauges
for the system failure monitoring task. The white
bars oscillated up and down continuously, each
driven by sine waves ranging in bandwidth from
0.01 Hz to 0.025 Hz. A system failure occurred

when one of the white bars moved into a red zone,
indicated in gray at the tops and bottoms of the
gauges in Figure 1. Participants used a Logitech
Digital 3-D joystick to manipulate the aircraft/
camera and an X-Key 20-button keypad to indi-
cate responses.

Procedure

Each participant flew one UAV through 10
consecutive mission legs. During each leg, the
participant completed three goal-oriented tasks
that are commonly associated with UAV flight
control: mission navigation and command target
inspection, target of opportunity (TOO) search,
and systems monitoring. At the beginning of each
mission leg, participants obtained their flight in-
structions for that leg via the message box. Once
participants arrived at the CT location, they loitered
around the target, manipulated a camera for closer
target inspection via a joystick, and reported back
relevant information to mission command (e.g.,
“What weapons are located on the south side of
the building?”).

Along each mission leg, participants were also
responsible for detecting and reporting the low-
salience TOOs, a task similar to the CT report
except that the TOOs were much smaller (1°–2°
of visual angle) than the CT report objects and were

Figure 1. UAV simulation display. The actual display was larger, had better resolution, and was color-coded.
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camouflaged. This was considered the secondary
or concurrent task. TOOs were located random-
ly somewhere in the middle 60% of each leg; if a
TOO was found, a report response with zooming
and panning was required, much like the CT re-
port. TOOs could become visible during simple
tracking (low workload) or during a participant re-
sponse to a system failure (high workload). These
two types of TOOs occurred, respectively, with a
ratio of roughly 4:1. Upon making a TOO report,
the UAV was reoriented by the pilot to continue
its original trajectory toward the command target.

Concurrently, participants were also required
to monitor the system gauges for possible system
failures (SFs), which were designed to fail during
either simple tracking (i.e., low workload: easy
concurrent task) or TOO and CT zoom/loiter in-
spection (i.e., high workload: difficult concurrent
task). SFs lasted only 30 s, after which the screen
flashed bright red and a harsh auditory alarm an-
nounced that the participant had failed to detect
the SF. There were a total of 10 SFs, with no more
than 2 occurring during any mission leg. SFs were
temporally separated by 4 to 10 min. Some SFs
were alerted with an automated auditory warning
system (i.e., a tone).

Design

The auditory autoalerts for the SFs were pro-
vided for three out of the four conditions, using a
between-subjects design (8 participants/group).
The A100 condition (A= automation, 100% relia-
ble) provided10 true alarms with10 SF events.The
A67f condition (f = false alarm, 67% reliable) pro-
vided 10 true alerts and an additional 5 false
alarms. The A67m condition (m = miss, 67% reli-
able) provided 10 true alerts but failed to alert an
additional 5 events (10 true alarms plus 5 misses).
During a false alarm, the participant was instruct-
ed to ignore the warning after cross-checking
with the raw data to confirm the inaccuracy of the
alarm. If an automation miss occurred, the partic-
ipant was instructed that he or she was still respon-
sible for “catching” the SF and correcting it. The
final condition was a baseline condition, with no
automation aid to assist participant performance.

RESULTS: EXPERIMENT 1

Three planned comparisons were used through-
out to assess statistical effects. For each dependent

measure, the following were compared: (a) base-
line versus the combination of A67f and A67m in
a planned comparison (i.e., weights of –1, 0.5, 0.5);
(b) baseline versus A100; and (c) A67f versus
A67m. Because only three a priori comparisons
were implemented to view important differences
between particular groups of interest, familywise
error rates were not adjusted (see Keppel, 1982,
for more details). One participant in the baseline
condition was dropped because the data file was
corrupted. Note that because of frequent missing
data points (e.g., if a target does not come into
view on the 3-D display, then a participant has no
chance to detect it; or if a participant does not de-
tect a target, then there are no data for the target
detection times), the degrees of freedom in the fol-
lowing comparisons are sometimes less than the
maximum value. Table 1 presents the data.

Primary Task: Mission Navigation and CT
Inspection

Tracking error and CT reporting. Planned com-
parisons revealed no main effect for tracking error
(all ps > .10) or for CT reporting speed and accu-
racy. Participants clearly treated mission naviga-
tion and CT inspection as the primary task.

Repeats. Planned comparisons revealed that
the 67% reliable conditions (mean of A67f and
A67m) did not statistically differ from baseline,
t(20) = 1.49, p > .10. There was also no significant
difference between the A100 condition, t(13) <
1.0, and baseline. However, the A67m condition
generated twice as many repeats as the did A67f
condition, t(14) = 2.52, p = .01. Thus, miss-prone
automation imposed more of a load on memory,
which was compensated by the repeat key, relative
to false-alarm-prone automation.

Secondary Task: TOO Monitoring

TOO detection rates. Planned comparisons
revealed no significant difference between the
baseline condition and the 67% reliable condi-
tions, t(18) < 1.0, or the A100 condition, t(12) <
1.0; however, detection rates were significantly
lower in the A67m (miss) condition than in the
A67f (false alarm) condition in both the low-
workload, t(12)=2.25, p < .05, and high-workload
trials, t(12) = 2.20, p < .05.

TOO detection times. Because low-workload
trials revealed no effects of condition on TOO de-
tection times (all ps > .10), we focused primarily
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on high-workload trials, when participants were
concurrently dealing with an SF, and resources
were assumed to be scarce. Planned comparisons
revealed no statistical difference between the mean
of the 67% reliable conditions relative to base-
line, t(11) < 1.0, or the A100 condition relative to
baseline, t(10) < 1.0. However, the A67f condi-
tion may have generated longer detection times
than the A67m condition did, t(6) = 1.40, p = .10
(approaching significance).

SF Monitoring

SF detection rates. The main focus of interest
in the SF task was during high-workload trials
(i.e., concurrent with TOO inspection), when
resources were assumed to be scarce, as low-
workload trials showed no effects (H1). Planned
comparisons revealed that the 67% reliable con-
ditions resulted in poorer detection rates than did
the baseline condition, t(19) = 1.97, p = .06

(approaching significance); however, these effects
were probably attributable to the A67f condition
(69%), in which performance was much worse
than in the A67m condition (92%), t(14) = 2.32,
p < .05. The A100 condition did not differ statis-
tically from baseline, t(10) < 1.0.

SF detection times. As with SF detection rates,
the only effects were observed in high-workload
trials. Figure 2 presents the overall SF detection
times as a function of workload and reveals that
performance in the 67% reliable conditions was
no better than in the baseline condition, t(20) < 1.0,
whereas performance in the A100 condition was
better than in baseline, t(11) = 1.96, p < .05. The
A67f and A67m conditions did not differ statisti-
cally overall, t(14) < 1.0. However, it is interesting
to note that the A67m condition resulted in detec-
tion times slower than those in the A67f condition
on those occasions when the automation failed to
notify the participants of an SF, t(14) = 2.64, p <

TABLE 1: An Overview of the Data from Experiment 1

Baseline A100 A67f A67m

Tracking error (MAE in meters) 84.25 83.80 79.32 83.08
(0.81) (0.69) (4.61) (1.03)

Number of repeats (per leg) 3.03 2.25 3.04*** 6.5***

(0.82) (0.48) (0.67) (1.20)

CT detection time (s) 2.45 2.41 2.31 3.37
(0.80) (0.51) (0.31) (1.07)

TOO detection rate (%) 58.57 56.57 65.56** 41.25**

(6.7) (1.3) (6.1) (9.0)

TOO detection time (s)
High workload 6.03 7.83 13.82* 7.7*

(1.99) (0.96) (3.08) (2.07)
Low workload 6.04 5.32 5.38 6.59

(0.91) (1.0) (0.96) (3.1)

SF detection rate (%)
Low load 100.0 100.0 94.46 97.92

(0.0) (0.0) (4.2) (1.4)
High load 95.83 88.0 68.75** 92.19**

(4.2) (7.1) (7.8) (5.2)

SF detection time (s)
Low load 2.17 3.00 2.69 3.15

(0.35) (0.71) (1.19) (0.61)
High load 10.75** 3.21** 11.0 13.75

(3.51) (0.52) (2.34) (2.06)

SF report accuracy (%) 88.36 91.22 96.58 96.67
(3.0) (2.2) (1.3) (1.1)

Note. SE values are in parentheses. MAE = mean absolute error, CT = command target, TOO = target of opportunity, SF = system
failure.

*p < .10. **p < .05. ***p < .01.
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.01, reflecting a form of complacency, as shown
by the bars at the right in Figure 2. Furthermore,
there was a tendency for faster response times
(RTs), compared with the A67F condition, on
those occasions when the alarm sounded.

DISCUSSION: EXPERIMENT 1

Participants were effective at protecting the
primary task indices of tracking and CT report
accuracy. As hypothesized (H1), automation reli-
ability effects were also seen most strongly in
high-workload situations. Perfect automation had
a beneficial effect, relative to baseline, on perfor-
mance in the automated task, but it had no bene-
fit on concurrent task performance, replicating
Metzger and Parasuraman (2005) and previous
UAV studies (e.g., Dixon et al., 2005). Impor-
tantly, imperfect automation (67%) hurt both the
automated task and concurrent tasks, even drop-
ping these below baseline in some cases. False
alarms and misses yielded qualitatively different
kinds of effects related to compliance (H3) and
reliance (H2), respectively. False alarms hurt the
system-monitoring task by reducing SF detection
rates and increasing SF detection times as com-
pared with baseline. This indicates that the oper-
ators were less compliant with the autoalerts
(reduced compliance). Misses hurt performance
in remembering flight instructions and possibly in
the target search task, indicating a reduction in re-
liance. We discuss these effects in more detail fol-

lowing the presentation of converging evidence
provided by Experiment 2.

METHODS: EXPERIMENT 2

The procedures of Experiment 2 replicated
those of Experiment 1 with the following excep-
tions: No baseline condition was run. An A80 con-
dition (A = automation, 80% reliable) failed by
giving 1 false alarm and 1 miss during each mis-
sion (8 true alarms, 1 miss, and 1 false alarm).
These 2 automation failures, occurring out of a
possible 10 alerted system failures, defined a .80
reliability level (1 – 2/10). An A60f condition (f =
false alarm, 60% reliable) was created by impos-
ing 3 automation false alarms and 1 automation
miss (4 automation failures) out of the 10 possible
system failures. An A60m condition (m = miss,
60% reliable) resulted in 3 misses and1false alarm
(6 true alarms plus 3 misses and 1 false alarm).
Participants were not aware of the precise level
of reliability provided by each automation aid;
however, in contrast to Experiment 1, depending
on the participants’assigned condition, they were
told in advance that the automation was either
“fairly reliable” or “not very reliable” as well as
the bias setting of the alert (i.e., more false alarms
or more misses). There were 24 participants
(8/group), none of whom participated in Experi-
ment 1. Participants were of the same demo-
graphics as those in Experiment 1, including the
same proportion of pilots to nonpilots.

Figure 2. SF detection times across condition and workload. Experiment 1. The A67m condition is divided into two
subgroups: a) Automation true alerts (67% of the time), and b) Automation misses (33% of the time). SE bars are
included.

SF Detection Times (Exp 1)

Condition



AUTOMATION RELIABILITY IN UAVS 481

RESULTS: EXPERIMENT 2

Because of the between-subjects design and
the close temporal proximity of the two experi-
ments, the baseline data for Experiment 1 were
used in the data analysis of Experiment 2 as well.
Table 2 presents an overview of the data. As with
Experiment 1, statistical inference was based on
planned contrasts of baseline versus 60% relia-
bility (mean of A60f and A60m), baseline versus
A80, and A60f versus A60m.

Mission Completion

Planned comparisons revealed no main effect
for tracking error or for CT report accuracy (all
ps > .10), findings consistent with Experiment 1.
However, planned comparisons did reveal that
for CT detection times (i.e., how long it took par-
ticipants to detect the CT once it entered the 3-D

display), performance in the two 60% reliable
conditions was worse than baseline, t(20) = 2.77,
p < .05, whereas the A80 condition did not differ
from baseline, t(13) < 1.0. There was no statistical
difference between the A60f and A60m condi-
tions, t(14) < 1.0. Compared with baseline, both
the 60% reliable conditions, t(19) = 2.49, p < .05,
and the A80 condition, t(11) = 1.72, p = .06 (ap-
proaching significance), generated more repeats.
The A60m condition generated significantly
more repeats than did the A60f condition, t(14) =
1.85, p < .05.

TOO Monitoring

TOO detection rates. Planned comparisons
revealed that there was no difference between the
60% reliable conditions and baseline, t(20) = 1.17,
p > .10, whereas performance in the A80 condi-
tion was better than baseline, t(13) = 2.15, p < .05.

TABLE 2: An Overview of the Data from Experiment 2

Baseline A80 A60f A60m

Tracking error (MAE in meters) 84.25 84.45 82.75 85.76
(0.81) (1.95) (5.11) (1.92)

Number of repeats (per leg) 3.03** 5.57* 5.25** 8.5**

(0.82) (1.72) (1.65) (1.59)

CT detection time (s) 2.45** 1.96 4.16** 4.11**

(0.80) (1.07) (1.10) (1.84)

TOO detection rate (%) 58.57** 93.0** 87.0 82.0
(6.7) (7.4) (7.1) (7.2)

TOO detection time (s)
High workload 6.03 8.58 14.72*** 11.86***

(1.99) (2.82) (2.63) (5.51)
Low workload 6.04 5.94 6.68 5.89

(0.91) (1.28) (1.20) (1.24)

SF detection rate (%)
Low load 100.0 100.0 97.0 98.0

(0.0) (2.8) (2.7) (2.7)
High load 95.83 69.0 50.0 75.0

(4.2) (19.7) (53.0) (26.0)

SF detection time (s)
Low load 2.17 2.08 2.50 3.15

(0.35) (0.71) (0.19) (0.19)
High load 10.75 11.27 19.98** 13.62**

(3.51) (3.31) (3.19) (3.20)

SF report accuracy (%) 88.36 97.0 98.0 94.0
(3.0) (4.8) (4.4) (5.0)

Note. SE values are in parentheses. MAE = mean absolute error, CT = command target, TOO = target of opportunity, SF = system
failure.

*p < .10. **p < .05. ***p < .01.
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There was no significant difference between the
A60f and the A60m conditions, t(14) < 1.0.

TOO detection times. Figure 3 presents TOO
detection times as a function of condition and
workload. On low-workload trials, there were no
effects of condition (all ps > .10).

In high-workload trials, planned comparisons
revealed that performance in the 60% reliable
conditions was worse than baseline, t(16) = 3.09,
p < .01, but there was no difference between the
A80 condition and baseline, t(12) < 1.0. A com-
parison of the A60f and A60m conditions revealed
no significant difference, t(11) = 1.04, p > .10,
although the trend toward greater decrement with
the A60f condition is consistent with that ob-
served in Experiment 1.

SF Monitoring

SF detection rates. There were no statistical ef-
fects of condition on SF detection rates (all ps >
.10); however, the reduced rates in the A60f con-
dition in high workload (50%), as compared with
the other conditions (mean = 74%), are consistent
with those observed in Experiment 1.

SF detection times. Figure 4 presents the SF de-
tection times as a function of condition and work-
load. No differences in performance were revealed
in the low-workload trials; however, in the high-
workload trials, performance in the 60% reliable
conditions may have been worse than baseline,
t(20) = 1.89, p = .07 (approaching significance).
This difference was attributable primarily to the
A60f condition, in which performance was worse
than in the A60m condition, t(14) = 2.16, p < .05.

The A80 condition did not differ from baseline,
t(13) < 1.0.

In Figure 4, we note that each of the 60% con-
dition means was composed of two different
components: responses when an alert correctly
sounded (A60f = 13.93 s; A60m = 3.96 s) and
those when the alert failed to sound (A60f =
26.05 s; A60m = 23.29 s). These data within the
high-workload condition reveal the clear slowing
for RT when the alarm “missed” the SF event,
indicating that in both conditions participants had
relied heavily upon the automation and their
detection suffered when it failed: the classic
“complacency” effect (Parasuraman et al., 1993).
Although this complacency effect was less pro-
nounced in the miss-prone condition, the differ-
ence between the two error conditions did not
approach significance. Correct alerts were re-
sponded to more rapidly with the miss-prone
automation than with the false-alarm-prone auto-
mation, t(14) = 2.00, p < .05, reflecting the partic-
ipants’ immediate compliance with the auditory
alert (Meyer, 2001, 2004) in the former condi-
tion, in contrast to the false-alarm-prone condition,
in which participants were less likely to interrupt
target inspection to deal with the alarms. We also
infer that greater compliance in the miss-prone
condition was coupled with an ongoing greater
awareness of the SF gauges, fostered by a reduced
reliance on that automation and causing the
greater disruption to CT memory recall described
previously. The difference between reliance and
compliance effects will be explored later in greater
detail.

Figure 3. Experiment 2: TOO detection times across condition and workload. SE bars are included.

TOO Detection Times (Exp 2)

Condition
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DISCUSSION: EXPERIMENT 2

As with Experiment 1, the primary tasks of
tracking and CT reporting were fully protected
from the effects of degraded reliability, although
degraded reliability, particularly that prone to
misses, induced more use of the repeat key to com-
pensate for the attention demands of this degrada-
tion. The effects on other tasks were primarily
seen in high-workload situations. Highly reliable
automation did not benefit performance in the au-
tomated task relative to baseline, but it had a small
benefit to concurrent task performance. Low-
reliability automation (60%) hurt both the auto-
mated task and concurrent tasks, with different
effects for false alarms and misses related to com-
pliance and reliance.

MODELING OF AUTOMATION 
DEPENDENCE

The current simulation results provide an ideal
opportunity to evaluate a computational version
of the model of reliance and compliance (Meyer,
2001), the two components of diagnostic auto-
mation dependence. Within each condition it is
possible to assess measures of reliance and com-
pliance:

Reliance is indexed by (a) the performance on
secondary or concurrent tasks. Here TOO accu-
racy and detection time (during non-SF periods,
when reliance was necessary) are examined, as is
frequency of use of the memory refresh repeat key
(higher reliance � better performance and less

use of the memory repeat). (b) Reliance is also
indexed by the time required to respond to an un-
announced failure (e.g., RT to an automation
“miss”: higher reliance � longer RT, reflecting
the “complacency effect” with highly reliable au-
tomation; Molloy & Parasuraman, 1996). We
evaluated this latter measure only under high-
workload conditions, in which reliance is most
likely to be observed.

Compliance is indexed by the response time
and accuracy to an announced system failure
(higher compliance � shorter RT), again under
high workload.

To the extent that reliance and compliance are
components of automation dependency, and that
operators are perfectly calibrated to true reliabil-
ities, we predicted that those two vectors of re-
liance and compliance performance measures
should be linearly affected by the independent
variables of miss rate (H2) and false alarm rate
(H3), respectively. Furthermore, to the extent that
it is an independent component, each vector
should be unaffected by the other independent
variable (H4).

Examination of the data revealed that all four
measures of reliance showed a correlation in the
expected direction. SF automation miss rate cor-
relates with TOO miss rate, r = .50; RT to TOO,
r = .73; repeats, r = .76; and RT to SF misses, r =
–0.97 – that is, higher miss rate � less reliance
� poorer concurrent task performance and faster
response to the automation miss (Meyer, 2001;
Parasuraman et al., 1993).

The two measures of SF alert compliance were

Figure 4. Experiment 2: SF detection times across condition and workload. SE bars are included.

SF Detection Times (Exp 2)
Condition
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assessed at high workload, when the participants’
attention was heavily engaged in manipulating the
3-D image to inspect targets (and therefore might
be more reluctant to leave the image inspection
task and switch to the alerted system display).
Here again, the correlations were in the expected
direction. The correlation of automation FA rate
with RT to SF was r = .37; with SF miss rate it
was r = .73 – that is, higher FA rate � less com-
pliance � slower and less accurate response to
the SF alerts. Here also, as with one of the TOO
reliance measures, a closer model fit was thwart-
ed by an Experiment 1 data point where, for FA =
5 (A67f from Experiment 1), performance was
better (more compliance) than one might other-
wise predict from the skeptical participant who is
mistrustful of a false-alarm-prone system. By way
of explanation, we note that in Experiment 1, par-
ticipants were not prealerted to the high false
alarm rate. Hence it would have taken a few tri-
als for the lack of compliance to evolve, thereby
diluting the effect.

Hypothesis 4 posits the independence of com-
pliance from miss rate and of reliance from false
alarm rate. To assess this, we correlated miss rate
to the two indices of compliance. The correlations
were r(3) = .29, p = .33 (SF RT), and r(3) = –.33,
p = .17 (SF miss rate), supporting such a model
of independence. The correlations of FA rate to
the four indices of reliance were r(2) = .92, p = .08
(RT to SF miss), r(3) = –.69, p = .18 (TOO miss
rate), r(3) = –.16, p = .14 (RT to TOO), and r(3) =
–.10, p = .27 (repeats). The former two values,
though not significant, suggest that reliance may
have been affected by the false alarm rate. High
false alarm rates appear to have produced greater
reliance upon the automation, although this claim
cannot be proven with the current data.

Because all individual correlations were based
on a small N, we examined Hypotheses 2 through
4 in a different way to increase statistical power.
Each variable was standardized and expressed as
a proportion of the range between minimum and
maximum observed value. These standardized
values were inverted where necessary, such that
changes in all variables within a vector that were
associated with increases in reliance or com-
pliance were of the same sign. The standardized
variables within each vector were then pooled.
Correlations on the pooled data revealed that miss
rate � reliance (r = .67, p < .01); miss rate �

compliance (r = .07, ns); FA rate � reliance (r =
–.50, p = .06); FA rate � compliance (r = .49, 
p = .11). As we will discuss, this pattern is only
partially consistent with the independence hypoth-
esis, because higher false alarm rates appear to
have an influence on reliance.

GENERAL DISCUSSION

Prior literature has well established that perfect
automation will offer benefits when workload is
high, either because the task being automated 
is challenging (e.g., Maltz & Shinar, 2003) or, as
in the current case, because other multitask re-
sponsibilities are competing for the operators’
limited attentional resources (C. D. Wickens &
Dixon, 2005). The current data confirmed this
effect, as A100 performance was superior to base-
line performance in the RT to system failures only
at high workload, supporting H1. Also, there are
now ample data showing that people depend on
automation even when it is imperfect, and here we
found in the A80 condition that benefits were still
evident over baseline performance in detecting
TOOs, just as such benefits have been observed
in other studies (e.g., Maltz & Shinar, 2003; St.
John & Manes, 2002; Yaacov et al., 2003).

In the current experiment, we were particular-
ly interested in the manifestations of this depen-
dence when the reliability dropped still further
and, in particular, how it was reflected in the two
components of dependence, reliance and compli-
ance, articulated by Meyer (2001, 2004). We found
first, in support of Hypothesis 1, that dependence
costs emerged more markedly under high-workload
than under low-workload conditions. This was
particularly true for the manifestations of compli-
ance, in which the prolongation of RT to auditory
alerts with the false-alert-prone system was ob-
served only while participants were concurrently
engaged in TOO and CT image inspection (high
workload, Figures 2 and 4), and only in this con-
dition was the decrease in SF detection rate evi-
dent (Experiment 1 only).

We also found support for Hypotheses 2 and 3
when examining the independent effects of miss
rate on reliance and false alarm rate on compli-
ance, respectively; this has not been previously
reported in a multitask experiment. Our approach
was through creating the “vector” measures of
each construct. Our data revealed a strong effect
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of miss rate on reliance (r = .67), as participants
became less trusting of the automation to alert
them if a failure occurred and (a) allocated more
attention to monitoring the raw data at the expense
of two concurrent tasks (TOO monitoring and CT
coordinate memory) but (b) caught the rare auto-
mation miss of the system failure more frequent-
ly. Correspondingly, we found support, although
somewhat weaker (lower correlation, r = .49), for
the negative effects of high false alert rate on com-
pliance, reflecting the “cry wolf” phenomenon.

Hypothesis 4 concerns independence, which
was not explicitly framed as a property of reliance
and compliance by Meyer (2004) but has indeed
appeared to be an implication of his research.
Here, however, the data were mixed. Indeed, miss
rate appeared to have little influence on the vec-
tor of compliance. The participants’attention was
drawn more or less to the alert, independent of the
imperfection of that alert when it was silent. Puz-
zling, however, was the influence of false alert rate
on reliance (r = –.50), which was just as strong as
its effect on compliance (r = .49). Upon closer
examination of the components of the reliance
vector, the direction of this effect (more false
alarms � less reliance) was driven heavily by the
fact that more false alarms increased the response
time to the rare automation-missed system fail-
ure. In this regard, it appears that a false-alarm-
prone system may leave the operator somewhat
less inclined to pay any attention to the entire auto-
mated domain, whether it be its alerting signal or
the raw data contained within.

As a final observation, we note the general
pattern of the current data: Our two lowest levels
of reliability clearly inhibited performance below
baseline, whereas our higher level of imperfect re-
liability (.80) showed general improvements. Such
findings are consistent with the recent integration
of the literature, suggesting that reliability levels
of 70% to 75% represent a rough “threshold” of
imperfect reliability assistance (C. D. Wickens &
Dixon, 2005). Although not all studies show that
reliability levels below 70% are worse than hav-
ing no automation at all (St. John & Manes,
2002), the majority of the studies examined in the
literature do seem to indicate that this may be an
emerging conclusion. Furthermore, this may have
implications for other domains (outside of the
UAV arena) that use diagnostic alerts, such as air-
port luggage screening and air traffic control.

Perhaps the most important implications of
the current results go beyond those specific to
UAVs and relate to the general implications of the
designer’s flexibility in setting the alerting thresh-
old in multitask environments. On the one hand,
by extending the findings of Maltz and Meyer
(2003), these results reveal profoundly different
effects on attention allocation and attention
switching, the ultimate costs of which must de-
pend on the importance of ongoing tasks and
alerting tasks. In this context, attention appears
to be driven by the cost of total (human and sys-
tem) misses versus false alarms. On the other
hand, the results provide some promise for the
development of computational models of automa-
tion effects that can be employed in predicting
human-automation interaction.
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